Faça download dos Aplicativos de Leitura Kindle Gratuitos e comece a ler eBooks Kindle nos mais populares smartphones, tablets e computadores pessoais. Para enviar o link de download para seu smartphone por SMS, use o formato internacional sem espaços (Código Internacional+DDD+Número. Exemplo: +551199999999)

  • Apple
  • Android
  • Windows Phone
  • Android

Para receber o link de download digite seu celular:

Preço Kindle: R$ 3,99
logo do Kindle Unlimited
Leia à vontade. Mais de 1 milhão de eBooks Saiba mais
Leia de graça
OU
OU

Essas promoções serão aplicadas a este item:

Algumas promoções podem ser combinadas; outras não são elegíveis. Para detalhes, por favor, acesse os Termos e Condições dessas promoções.

Entregar no seu Kindle ou em outro dispositivo

Entregar no seu Kindle ou em outro dispositivo

Machine Learning With Random Forests And Decision Trees: A Visual Guide For Beginners (English Edition) por [Hartshorn, Scott]
Anúncio do aplicativo do Kindle

Machine Learning With Random Forests And Decision Trees: A Visual Guide For Beginners (English Edition) eBook Kindle

4.2 de 5 estrelas 5 avaliações de clientes

Ver todos os formatos e edições Ocultar outros formatos e edições
Preço
Novo a partir de Usado a partir de
eBook Kindle
R$ 3,99

Número de páginas: 74 páginas Configuração de fonte: Habilitado Page Flip: Habilitado
Idioma: Inglês

Kindle Unlimited
Kindle Unlimited
Leia este e mais de 1 milhão de eBooks de graça com Kindle Unlimited. Saiba mais.

Descrições do Produto

Descrição do produto

Machine Learning - Made Easy To Understand

If you are looking for a book to help you understand how the machine learning algorithms "Random Forest" and "Decision Trees" work behind the scenes, then this is a good book for you.  Those two algorithms are commonly used in a variety of applications including big data analysis for industry and data analysis competitions like you would find on Kaggle.

This book explains how Decision Trees work and how they can be combined into a Random Forest to reduce many of the common problems with decision trees, such as overfitting the training data.


Several Dozen Visual Examples

Equations are great for really understanding every last detail of an algorithm.  But to get a basic idea of how something works, in a way that will stick with you 6 months later, nothing beats pictures.  This book contains several dozen images which detail things such as how a decision tree picks what splits it will make, how a decision tree can over fit its data, and how multiple decision trees can be combined to form a random forest.


This Is Not A Textbook

Most books, and other information on machine learning, that I have seen fall into one of two categories, they are either textbooks that explain an algorithm in a way similar to "And then the algorithm optimizes this loss function" or they focus entirely on how to set up code to use the algorithm and how to tune the parameters.

This book takes a different approach that is based on providing simple examples of how Decision Trees and Random Forests work, and building on those examples step by step to encompass the more complicated parts of the algorithms.  The actual equations behind decision trees and random forests get explained by breaking them down and showing what each part of the equation does, and how it affects the examples in question.


Python Files & Excel File For Many Of The Examples Shown In The Book

Some topics in machine learning don't lend themselves to equations in an Excel table.  Things like error checking or complicated conditionals are hard to replicate outside of code.  However some topics work quite well in a spreadsheet.  Topics such as entropy and information gain, which is how a decision tree picks its splits, can be easily calculated in a spreadsheet.  The spreadsheet used to generate many of the examples in this book is available for free download, as are all of the Python scripts that ran the Random Forests & Decision Trees in this book and generated many of the plots and images.  

If you are someone who learns by playing with the code, and editing the data or equations to see what changes, then use those resources along with the book for a deeper understanding.


Topics Covered

The topics covered in this book are

  • An overview of decision trees and random forests
  • A manual example of how a human would classify a dataset, compared to how a decision tree would work
  • How a decision tree works, and why it is prone to overfitting
  • How decision trees get combined to form a random forest
  • How to use that random forest to classify data and make predictions
  • How to determine how many trees to use in a random forest
  • Just where does the "randomness" come from
  • Out of Bag Errors & Cross Validation - how good of a fit did the machine learning algorithm make?
  • Gini Criteria & Entropy Criteria - how to tell which split on a decision tree is best among many possible choices
  • And More

If you want to know more about how these machine learning algorithms work, but don't need to reinvent them, this is a good book for you




Detalhes do produto

  • Formato: eBook Kindle
  • Tamanho do arquivo: 4856 KB
  • Número de páginas: 74 páginas
  • Quantidade de dispositivos em que é possível ler este eBook ao mesmo tempo: Ilimitado
  • Vendido por: Amazon Servicos de Varejo do Brasil Ltda
  • Idioma: Inglês
  • ASIN: B01JBL8YVK
  • Leitura de texto: Habilitado
  • X-Ray:
  • Dicas de vocabulário: Não habilitado
  • Leitor de tela: Compatível
  • Configuração de fonte: Habilitado
  • Avaliação média: 4.2 de 5 estrelas 5 avaliações de clientes
  • Lista de mais vendidos da Amazon: #4,381 entre os mais vendidos na Loja Kindle (Conheça os 100 mais vendidos na Loja Kindle)


Avaliação de clientes

Compartilhe seus pensamentos com outros clientes
Ver todas as 5 avaliações dos clientes

Principais avaliações de clientes

30 de novembro de 2017
Formato: eBook Kindle|Compra verificada
24 de novembro de 2017
Formato: eBook Kindle|Compra verificada
6 de maio de 2017
Formato: eBook Kindle|Compra verificada
19 de novembro de 2017
Formato: eBook Kindle
2 pessoas acharam isso útil
|Comentar|Informar abuso
21 de abril de 2017
Formato: eBook Kindle|Compra verificada
2 pessoas acharam isso útil
|Comentar|Informar abuso
click to open popover

Onde está meu pedido?

Frete e devoluções

Precisa de ajuda?